是这个问题引发了我的思考。
下列说法错误的是:
A函数值域中的每一个值有定义域中的一个值与它对应
B函数的定义域是无限集则值域也是无限集
C定义域与对应关系确定后,函数值也就确定了
D若函数的定义域只有一个元素,则值域也只有一个元素
先说说我的想法。我个人认为,严格来说,这四个选项都有点问题。A显然是不对的, 因为函数存在多对一的情况,所以不对。B也是有问题的,比如说函数y=0x,这个函数x取值范围是无限的,可是值域是有限的,只有一个0,这个函数并不违反规定,可以视为y=f(x),这个f为乘0;或者,比如取整函数y=[x],我令其定义域为(1,5),为无限集,可是值域只有{2,3,4}三个元素,也是有限集,所以B不对。C选项就涉及到定义的问题了,课本上说函数就是两个非空数集A、B之间的映射,可以一对一,也可以多对一,A中的每一个元素在B中有唯一与之对应的元素,而B中可以有剩余元素,即A中可以没有元素与B中的元素相对应。这样问题就来了,我们平时在求函数的值域时,都是根据其定义域求的,定义域和对应关系确定了,值域也就求出来了,但是如果按照值域这样的规定,那么就可以投机取巧了:只要题中问值域,我就可以答值域是R,因为若B为R,则A里面元素的所有像必然被包括在B里,而B中其余的元素我就说没有原像,这是合乎规定的。所以,问题就是纠结于,我们把A集合称为定义域,B集合称为值域,这两个集合到底是怎么产生的?是先有A和对应法则,然后算出来的B呢,还是A、B两个集合就是各自独立没有关系的?如果按照书中的规定,我更倾向于后者,就是两者没有关系,里面的元素是任意取的,是A、B两个集合恰好有一定的对应关系使两个集合联系起来了。可是如果这样,就无法避免值域的不可求性,可以钻空子了。严谨的数学是不允许有这样的空子的!而D选项如果按照规定,也无疑使错误的。关键就在于A和B究竟是什么关系。【关键就在于A和B是什么关系!!!!!!!!!!!!!!!!!!】这个问题困扰了我好久,我希望能得到高中老师或者大学教授的耐心回答,先行谢过大家了!请高手答疑解惑!!!!!!!!!!!!!!!!!!
辛苦大家了,我在一个朋友的提示下,在百度百科里面找到了一段这样的话:输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。 这个样子呢,问题就解决了。我以前用过的教材是错误的,但愿现在改回来了,呵呵。
大家说的都是对的,谢谢大家的回答。我把分给第一个详细回答我这个问题且回答对了的人,大家没有意见吧?呵呵,谢谢大家的支持!谢谢大家!
请您说出根据,您的观点出自于哪里?
追答你可真执着于书本啊
数学分析 第二版上册 作者:陈纪修等 高等教育出版社 P11 映射的定义
您这咋还上大学教材了捏。。。呵呵,如果真有这样的说法,那就解决了,只是高中教材不是这样写的,应该是有问题的。敢问您是哪所大学的?看样子数学系的大神啊!
追答过奖 我很差 大学不值一提
满意的话 望采纳