求二重积分∫∫y*(根号下(1+x^2-y^2))dxdy,其中D是由直线y=x,x=-1,y=1所围成

-1/3 ∫ (上标1,下表-1) [ (1+x^2-y^2)^(3/2) ] )(上标1,下标x) dx = -1/3 ∫ (上标1,下标-1) (|x|^3-1) dx = -2/3 ∫ (上标1,下标0) (x^3-1) dx =1/2 中 -1/3 ∫ (上标1,下表-1) [ (1+x^2-y^2)^(3/2) ] )(上标1,下标x) dx = -1/3 ∫ (上标1,下标-1) (|x|^3-1) dx 是怎么来的 为什么不能直接算

第1个回答  2020-06-10
同问,自己计算结果和书上的例题不一样,看了其他人的解释不懂, 希望有更好的解释
相似回答