在同济大学高等数学第六版三重积分教材中,计算∫∫∫z^2dxdydz,其中空间闭区域为椭球面x^2/a^2+y^2/b^2+z^2/c^2=1。
教材的接法用的是:
∫∫∫z^2dxdydz=∫(-c,c)z^2dz∫∫dxdy=πab∫(-c,c)(1-z^2/c^2)z^2dz
其中(-c,c)指的是积分上下限,我想知道最后一步是怎麼得出来的,最好能详细说明一下。
截面方程为x^2/a^2+y^2/b^2=1吗,还有怎么得出椭圆的面积=πab(1-z^2/c^2 )
追答空间闭区域为椭球面x^2/a^2+y^2/b^2+z^2/c^2=1
截面方程为x^2/a^2+y^2/b^2=1-z^2/c^2
用面积积分得出的椭圆的面积公式,此时 把1-z^2/c^2 当成一个常数,就可以得出椭圆的面积=πab(1-z^2/c^2 )
可以令x= a√(1-z^2/c^2 )cosθ ,y= b√(1-z^2/c^2 )sinθ dx=......dy=....
自己推导一下吧