第2个回答 2020-06-29
本题需要先积y,若先积x计算量会很大。
∫∫(y√1+x²-y²)dxdy
=∫[-1--->1]
dx
∫[x--->1](y√1+x²-y²)dy
=(1/2)∫[-1--->1]
dx
∫[x--->1](√1+x²-y²)d(y²)
=(-1/2)∫[-1--->1]
(2/3)(1+x²-y²)^(3/2)
|[x--->1]
dx
=(-1/3)∫[-1--->1]
[|x|³-1]
dx
注意这里不能写x³,因为x有负值
被积函数是偶函数,由奇偶对称性
=(-2/3)∫[0--->1]
[|x|³-1]
dx
=(2/3)∫[0--->1]
[1-x³]
dx
=(2/3)(x-x⁴/4)
|[0--->1]
=(2/3)(1-1/4)
=1/2