第1个回答 2014-04-28
令O=tanx,那麼1+O^2=1+tan^2(x)=1/cos^2(x)=sec^2(x)
d(O)/dx=d(tanx)/dx=1/cos^2(x)=sec^2(x)
所以S根号下(1+O^2)dx=S ( sec(x)*sec^2(x)dx)=S sec^3(x) dx
∵∫ sec^3(x) dx = ∫ secx d( tanx) =secx tanx - ∫ tan^2 (x) secx dx
= secx tanx - ∫ (sec^2(x) - 1 ) secx dx
=secx tanx - ∫ (sec^3(x)dx+∫ secx dx
∴∫ sec^3(x)dx=1/2 secx tanx +1/2∫ secx dx
=1/2 secx tanx +1/2∫[sec^2(x)+secxtanx]/(secx+tanx)dx
=1/2 secx tanx +1/2ln|secx+tanx|+C本回答被网友采纳