没有计算阶乘的公式的,也没有简便方法,只是硬算,也可以运用计算机,可以计算到65!,如果你想计算跟大的数,我建议你上百度寻找计算阶乘的软件,听说多大的数都能计算出来。 嘿!那个Q币的,怎么了?? ^_^
还有这个参考:
由于阶乘运算的增长速度特别快(比2^n的增长速度快),对于较小整数的阶乘运算采用简单的递规算法可以实现,但是对于大整数的乘法(比如1000!),则传统的递规算法就失去了作用。
由于本人的水平不高,用下列拙劣的方式实现,请高人多多指教。具体如下:定义一个很长的数组,用数组的每一项表示计算结果的每一位。例如,7!=5040,a[1000],则a[0]=0,a[1]=4,a[2]=0,a[3]=5。
程序源代码:
/**
*计算大数的阶乘,算法的主要思想就是将计算结果的每一位用数组的一位来表示:如要计算5!,那么首先将
*(1) a[0]=1,然后a[0]=a[0]*2,a[0]=2,
*(2) a[0]=a[0]*3,a[0]=6
*(3) a[0]=a[0]*4,a[0]=24,此时a[1]=2,a[0]=4
*/
public class Factorial
{
static int a[] = new int [10000];
static void factorial(int n)
{
for(int i=2; i< a.length; i++)
a[i] = 0; //将数组元素初始化
a[0] = 1; //用数组的一项存放计算结果的位数
a[1] = 1; //将第一项赋值为一
for(int j= 2; j <= n; j++)
{
int i=1;
int c = 0; //c表示向高位的进位
for(; i <= a[0]; i++)
{
a[i] = a[i] * j + c;//将来自低位的计算结果和本位的结果相加
c = a[i] / 10;
a[i] = a[i] % 10;
}
for(; c != 0; i++)
{
a[i] = c%10;
c = c / 10;
}
a[0] = i - 1;
}
}
public static void main(String[] args)
{
String num = args[0];
int count = 0;
int n = Integer.parseInt(num);
f(n);
for(int i= a[0]; i>0; i--)
{
count++;
System.out.print(/*"a[" + i + "]=" + */a[i]/* + " "*/);
}
System.out.println("\n"+count);
}
}
Trackback:
http://tb.blog.csdn.net/TrackBack.aspx?PostId=528778 参考资料:
http://blog.csdn.net/hengshan/archive/2005/11/13/528778.aspx