答案是条件收敛
(注:∑1/n^k,这里当且仅当k>1时,级数收敛)
因为对于任意整数n,cosnπ=1或-1
所以
∑|cosnπ*1/n^(1/3)|=∑1/n^(1/3)
这是个发散级数,所以原级数不是绝对收敛。
因为当n是奇数时 cosnπ=-1,当n是偶数时 cosnπ=1
所以我们考察第n项和第n+1项的和,这里我们假设n是奇数。
和=-1/n^(1/3)+1/(n+1)^(1/3)
=[n^(1/3)-(n+1)^(1/3)]/[n^(1/3)*(n+1)^(1/3)]
=-1/{n^(1/3)*(n+1)^(1/3)*[n^(2/3)+n^(1/3)*(n+1)^(1/3)+(n+1)^(2/3)]
>-1/3*1/n^(4/3)
这里∑1/n^(4/3)是收敛的
也就是说如果我们把原级数的第2K+1项和第2K+2项相结合得到的新级数是收敛的
也就是说原级数收敛
也就是条件收敛
追答
追问这是交错级数,不可以用莱布尼茨公式来判断吗
额 可以吗
追答可以
追问好的