高中数学三角函数的诱导公式有哪些

整理不统一

in(2kπ+α)=sinα k∈z
  cos(2kπ+α)=cosα k∈z
  tan(2kπ+α)=tanα k∈z
  cot(2kπ+α)=cotα k∈z
  sec(2kπ+α)=secα k∈z
  csc(2kπ+α)=cscα k∈z
  公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  sec(π+α)=-secα
  csc(π+α)=-cscα
  公式三: 任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  sec(-α)=secα
  csc(-α)=-cscα
  公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  sec(π-α)=-secα
  csc(π-α)=cscα
  公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  sec(2π-α)=secα
  csc(2π-α)=-cscα
  公式六: π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sec(π/2+α)=-cscα
  csc(π/2+α)=secα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sec(π/2-α)=cscα
  csc(π/2-α)=secα
  推算公式:3π/2±α与α的三角函数值之间的关系:
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sec(3π/2+α)=cscα
  csc(3π/2+α)=-secα
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  sec(3π/2-α)=-cscα
  csc(3π/2-α)=-secα[1]
  诱导公式记忆口诀:“奇变偶不变,符号看象限”。 
两角和差公式
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ-cosαsinβ
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
  sin2α=2sinαcosα
  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan2α=2tanα/(1-tan^2(α))
半角的正弦、余弦和正切公式
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
万能公式
  sinα=2tan(α/2)/(1+tan^2(α/2))
  cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
  tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
  sin3α=3sinα-4sin^3(α) 
  cos3α=4cos^3(α)-3cosα 
  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函数的和差化积公式
  sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
  sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
  cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
  cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函数的积化和差公式
  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
  sinα·sinβ=- 0.5[cos(α+β)-cos(α-β
温馨提示:内容为网友见解,仅供参考
第1个回答  2012-06-17
in(2kπ+α)=sinα k∈z
  cos(2kπ+α)=cosα k∈z
  tan(2kπ+α)=tanα k∈z
  cot(2kπ+α)=cotα k∈z
  sec(2kπ+α)=secα k∈z
  csc(2kπ+α)=cscα k∈z
  公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  sec(π+α)=-secα
  csc(π+α)=-cscα
  公式三: 任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  sec(-α)=secα
  csc(-α)=-cscα
  公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  sec(π-α)=-secα
  csc(π-α)=cscα
  公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  sec(2π-α)=secα
  csc(2π-α)=-cscα
  公式六: π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sec(π/2+α)=-cscα
  csc(π/2+α)=secα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sec(π/2-α)=cscα
  csc(π/2-α)=secα
  推算公式:3π/2±α与α的三角函数值之间的关系:
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sec(3π/2+α)=cscα
  csc(3π/2+α)=-secα
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  sec(3π/2-α)=-cscα
  csc(3π/2-α)=-secα[1]
  诱导公式记忆口诀:“奇变偶不变,符号看象限”。 
两角和差公式
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ-cosαsinβ
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
  sin2α=2sinαcosα
  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan2α=2tanα/(1-tan^2(α))
半角的正弦、余弦和正切公式
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
万能公式
  sinα=2tan(α/2)/(1+tan^2(α/2))
  cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
  tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
  sin3α=3sinα-4sin^3(α) 
  cos3α=4cos^3(α)-3cosα 
  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函数的和差化积公式
  sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
  sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
  cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
  cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函数的积化和差公式
  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
  sinα·sinβ=- 0.5[cos(α+β)-cos(α-β
第2个回答  2012-06-05
in(2kπ+α)=sinα k∈z
  cos(2kπ+α)=cosα k∈z
  tan(2kπ+α)=tanα k∈z
  cot(2kπ+α)=cotα k∈z
  sec(2kπ+α)=secα k∈z
  csc(2kπ+α)=cscα k∈z
  公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  sec(π+α)=-secα
  csc(π+α)=-cscα
  公式三: 任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  sec(-α)=secα
  csc(-α)=-cscα
  公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  sec(π-α)=-secα
  csc(π-α)=cscα
  公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  sec(2π-α)=secα
  csc(2π-α)=-cscα
  公式六: π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sec(π/2+α)=-cscα
  csc(π/2+α)=secα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sec(π/2-α)=cscα
  csc(π/2-α)=secα
  推算公式:3π/2±α与α的三角函数值之间的关系:
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sec(3π/2+α)=cscα
  csc(3π/2+α)=-secα
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  sec(3π/2-α)=-cscα
  csc(3π/2-α)=-secα[1]
  诱导公式记忆口诀:“奇变偶不变,符号看象限”。 
两角和差公式
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ-cosαsinβ
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、余弦和正切公式
  sin2α=2sinαcosα
  cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
  tan2α=2tanα/(1-tan^2(α))
半角的正弦、余弦和正切公式
  sin^2(α/2)=(1-cosα)/2
  cos^2(α/2)=(1+cosα)/2
  tan^2(α/2)=(1-cosα)/(1+cosα)
  tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
万能公式
  sinα=2tan(α/2)/(1+tan^2(α/2))
  cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
  tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、余弦和正切公式
  sin3α=3sinα-4sin^3(α) 
  cos3α=4cos^3(α)-3cosα 
  tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函数的和差化积公式
  sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
  sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
  cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
  cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
相似回答