1/(1+x^3)的不定积分求法如下:
1+x^3=(x+1)(x^2-x+1)
用待定系数法:A/(x+1)+(Bx+c)/(x^2-x+1)=1/(x+1)(x^2-x+1)
得A=1/3,B=-1/3,C=2/3
所以∫[1/(1+x^3)]dx =1/3∫(1/(x+1))dx-1/3∫((x-2)/(x^2-x+1))dx
其中1/3∫(1/(x+1))dx=1/3ln|x+1|+c
因为d(x^2-x+1)=(2x-1)dx,所以x-2=1/2(2x-1)-3/2
∫((x-2)/(x^2-x+1))dx=1/2∫(d(x^2-x+1)/(x^2-x+1))-3/2∫(1/(x^2-x+1))dx
其中∫(d(x^2-x+1)/(x^2-x+1))=ln|x^2-x+1|+c
∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
因为∫(dx/(x^2+a^2))=(1/a)arctan(x/a)
所以∫(1/(x^2-x+1))dx=∫(dx/((x-1/2)^2+(根号3/2)^2))
=(2/根号3)arctan((x-1/2)/(根号3/2))+c
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
好像第一次代入之后化简错了,抱歉,无视我就好。
有个比较生硬的办法就是先求分母x^3+x+1=0的解设为a,b,c,那么原式=1/((x-a)(x-b)(x-c)),再分成A/(x-a)+B/(x-b)+C/(x-c)分别进行积分运算即可,其中A,B,C用待定系数法计算出来
本回答被网友采纳