第1个回答 2011-08-27
解:所围成的立体的体积=∫<0,2π>dθ∫<0,√2>[(6-2r²cos²θ-r²sin²θ)-(r²cos²θ+2r²sin²θ)]rdr
=∫<0,2π>dθ∫<0,√2>(6-3r²)rdr
=∫<0,2π>dθ∫<0,√2>(6r-3r³)dr
=2π[3r²-(3/4)r^4]│<0,√2>
=2π[3(√2)²-(3/4)(√2)^4]
=2π(6-3)
=6π。
第2个回答 2017-04-25
首先将两个方程并列找出两个曲面相交的曲线.通过消去z,我们得到:
2-x²=x²+2y²
即
x²+y²=1
所以,此曲线位于半径为1的圆柱面上.那么x和y的积分限很容易就找到了:x²+y²=1
要找到z的积分限,就需要知道两个曲面哪个在上面,哪个在下面.因为所包的体积在圆柱内部,所以要求x²+y²x²+2y²,即z=2-x²在上面,z=x²+2y²在下面.
根据上面的讨论,我们就可以写出体积分:
V=∫∫dxdy∫_(x²+2y²)^(2-x²)dz
这里我用符号_(x²+2y²)来表达z积分的下限,^(2-x²)表达z积分的上限.(记住xy积分限是圆形x²+y²=1.)
对z的积分很容易:
∫_(x²+2y²)^(2-x²)dz=(2-x²)-(x²+2y²)=2-2x²-2y²
剩下的就是对xy的两重积分.
V=∫∫(2-2x²-2y²)dxdy
这个积分最容易在极坐标里做.变换为极坐标时,x²+y²=r²,dxdy=rdrdφ.积分限为r从0到1,φ从0到2π.
V=∫∫(2-2x²-2y²)dxdy=∫_0^1(2-2r²)rdr∫_0^(2π)dφ
两个积分各为:
∫_0^(2π)dφ=2π
∫_0^1(2-2r²)rdr=r²-(1/2)r^4|_0^1=1/2
V=(1/2)2π=π
所以体积是π.