第一类曲线积分和第二类曲线积分有什么区别

如题所述

第一类曲线积分和第二类曲线积分积分对象不同、应用场合不同、是否考虑方向。

1、积分对象不同:第一类曲线积分是对弧长积分,对弧长的曲线积分的积分元素是弧长元素;第二类曲线积分是对坐标(有向弧长在坐标轴的投影)积分,对坐标轴的曲线积分的积分元素是坐标元素。

2、应用场合不同:第一类曲线积分求非密度均匀的线状物体质量等问题,第二类曲线积分解决做功类等问题。

3、是否考虑方向:第一类的,都是和方向无关的,对标量的积分。第二类的,都是和方向有关的,对某种意义上的矢量的积分。

扩展资料:

第一、二类曲线积分的特点:

第一、二类曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。带有权重是曲线积分与一般区间上的积分的主要不同点。

量子力学中的“曲线积分形式”和第一、二类曲线积分并不相同,因为曲线积分形式中所用的积分是函数空间上的泛函积分,即关于空间中每个路径的概率函数进行积分。然而,曲线积分在量子力学中仍有重要作用,比如说复围道积分常常用来计算量子散射理论中的概率振幅。

参考资料:

百度百科-第一型曲线积分

百度百科-第二型曲线积分

温馨提示:内容为网友见解,仅供参考
第1个回答  推荐于2017-10-01
第一类是对弧长积分,即定义在弧长上,没有方向.如求非密度均匀的线状物体质量。
第二类是对坐标(有向弧长在坐标轴的投影)积分,有方向.如解决做功类问题。
假设曲线正向,两者可互换,弧长元dscosθ=dx,dssinθ=dy,(cosθ,sinθ)是沿着正向曲线单位切向量。本回答被提问者和网友采纳
第2个回答  2019-12-21
第1类曲线积分和第2类曲线积分主要是他们采取积分的方式不同,第1类采用的是定积分的相关的曲线积分,而第2类则不用这种方法。
第3个回答  2020-04-28
第4个回答  2020-05-31
、应用场合不同、是否考虑方向。

1、积分对象不同:第一类曲线积分是对弧长积分,对弧长的曲线积分的积分元素是弧长元素;第二类曲线积分是对坐标(有向弧长在坐标轴的投影)积分,对坐标轴的曲线积分的积分元素是坐标元素。

2、应用场合不同:第一类曲线积分求非密度均匀的线状物体质量等问题,第二类曲线积分解决做功类等问题。

3、是否考虑方向
相似回答