第1个回答 2011-05-11
求下列函数的最大和最小值:
1.y=cosx/(cosx+2)
解:令y′=[-sinx(cosx+2)+cosxsinx]/(cosx+2)²=-2sinx/(cosx+2)²=0
得sinx=0,故得驻点x=kπ,因为只求最大最小值,故取k=0和1就可以了;x在0点附近由负变正时,-sinx由正变负,即y′由正变负,故x=0是极大点,ymax=1/3;x在π附近由小于π变到大于π
时,-sinx由负变正,故x=π是极小点,ymin=-1/(-1+2)=-1.
2.y=3-√(4-sin2x)
解:令y′=cos2x/√(4-sin2x)=0,得cos2x=0,2x=π/2+kπ,故得驻点x=π/4+kπ/2
只考虑k=0和1两个点就可以了。当k=0时,cos2x在x=π/4左右由正变负,即y′ 由正变负,故x=π/4是极大点,极大值ymax=3-√(4-1)=3-√3;当k=1时,x=在x=3π/4左右,cos2x由负变正,即y′
由负变正,故x=3π/4是极小点,ymin=3-√[4-sin(3π/2)]=3-√5.