高数的“无穷级数”问题

麻烦各位大侠了。。。。。。。。。
此题答案为p>0
小女子只是想求具体的解题思路和步骤,先行谢过了。。。。。。。

p级数仅在p>1时收敛
=>
1、当p>1时
∑|(-1)^n/(n^p)|=∑1/(n^p)收敛,故∑(-1)^n/(n^p)绝对收敛

p级数发散时,即p≤1时
分两种情况:
2、当0<p≤1时
∑(-1)^n/(n^p)为交错级数,因1/(n^p)->0,且|An|=1/n^p>1/(n+1)^p=|A(n+1)|,由莱布尼兹判别定理,∑(-1)^n/(n^p)收敛,而∑1/(n^p)发散,故,条件收敛
3、p≤0时
1/n^p不->0,故发散
温馨提示:内容为网友见解,仅供参考
第1个回答  2011-04-01
这是交错级数,由Lebniz判别法 此级数当且仅当1/n^p 单调趋于0时收敛 所以收敛范围为p>0
相似回答
大家正在搜