矩阵是不可逆,特征值是不是一定存在0

如题所述

矩阵不可逆,一定有一个特征值是0。

因为若矩阵不可逆,可矩阵的行列式为为0,又因为矩阵的行列式等于所有特征值的乘积,故必有一个特征值为0。

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。

扩展资料:

求矩阵的全部特征值和特征向量的方法如下:

1、计算的特征多项式;

2、求出特征方程的全部根,即为的全部特征值;

3、对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。

.

温馨提示:内容为网友见解,仅供参考
第1个回答  2013-12-24
是的!
方阵可逆的充要条件是行列式非零,故不可逆有行列式为0,即0E-A的行列式为0,0是一个特征值
第2个回答  推荐于2017-11-26
对的, 不可逆方阵至少有一个特征值是0
(Ax=0可以写成Ax=0x)本回答被提问者采纳
第3个回答  2020-12-09

相似回答