(30)
f(0)=0, f'(0) 存在, F(x) =∫(0->x) t^4. f(x^5-t^5) dt
To find : lim(x->0) F(x)/x^10
solution:
let
u=x^5-t^5
du=-5t^4 dt
t=0, u=x^5
t=x, u=0
F(x)
=∫(0->x) t^4 .f(x^5-t^5) dt
=(-1/5)∫(x^5->0) f(u) du
=(1/5)∫(0->x^5) f(t) dt
lim(x->0) F(x)/x^10
=lim(x->0) (1/5)∫(0->x^5) f(t) dt /x^10 (0/0 分子分母分别求导)
=lim(x->0) x^4. f(x^5) /(10x^9)
=lim(x->0) f(x^5) /(10x^5) (0/0 分子分母分别求导)
=lim(x->0) 5x^4.f'(x^5) /(50x^4)
=(1/10) lim(x->0) f'(x^5)
=(1/10)f'(0)