X和Y取值分别为0,1,2和0,1,2
P{X=x}= C『2,x』(0.2^x × 0.8^(2-x))
P{Y=y}= C『2,y』(0.5^y × 0.5^(2-y))
由于X,Y相互独立,P{X|Y}=P{X}
当Y=0时,X=0
P{X≤0,Y=0}= P{X=0}P{Y=0}
= C『2,0』0.8^2 C『2,0』0.5^2
=16/25 × 1/4
=4/25
当Y=1时,X=0或1
P{X≤1,Y=1}= (P{X=0}+P{X=1})P{Y=1}
= (C『2,0』0.8^2 + C『2,1』0.2×0.8)C『2,1』0.5^2
=(16/25+2×4/25) × 2×1/4
=24/25×1/2
=12/25
当Y=2时,X=0或1或2
P{X≤2,Y=2}= P{X≤2}P{Y=2}
= 1×C『2,2』0.5^2
= 1×1/4
= 1/4
综上,P{X≤Y}
=P{X≤0,Y=0}+P{X≤1,Y=1}+P{X≤2,Y=2}
=4/25 + 12/25 + 1/4
=16/100 + 48/100 + 25/100
=89/100
温馨提示:内容为网友见解,仅供参考