计算?Ω(x2+y2)dxdydz,其中Ω是由曲面x2+y2=2z及平面z=2所围成的有界闭区域

计算?Ω(x2+y2)dxdydz,其中Ω是由曲面x2+y2=2z及平面z=2所围成的有界闭区域.

结果为:16π/3

解题过程如下(因有专有公式,故只能截图):

扩展资料

求有界闭区域的方法:

设OABC是不共面的四点 则对空间任意一点P 都存在唯一的有序实数组(x,y,z)。

使得OP=xOA+yOB+zOC {OP,OA,OB,OC均表示向量} 说明:若x+y+z=1 则PABC四点共面 (但PABC四点共面的时候,若O在平面ABP内,则x+y+z不一定等于1,即x+y+z=1 是P.A.B.C四点共面的充分不必要条件)。

空间一点P位于平面MAB内的充要条件是存在有序实数对x.y,使 MP=xMA+yMB {MP MA MB 都表示向量} 或对空间任一定点O,有OP=OM+xMA+yMB {OP,OM,MA,MB表示向量}。

若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。

温馨提示:内容为网友见解,仅供参考
第1个回答  2014-10-07
由题意,Ω={(x,y,z)|
1
2
(x关注

简单计算一下即可,答案如图所示

第2个回答  推荐于2017-09-13
解答过程如下:
用柱面极坐标来计算。
令x=rcosθ, y=rsinθ, dxdy=rdrdθ, z从r²/2到2积分,r从0到2,θ从0到2π。
所以,原积分=∫(0->2π)dθ ∫(0->2) dr ∫(r²/2->2) r² rdrdθ=128π/9。

柱面坐标系的定义:
设M(x,y,z)为空间内一点,并设点M在xoy面上的投影P的极坐标为r,θ,则这样的三个数r, θ,z就叫点M的柱面坐标。
规定: 0≤θ≤2π
0≤r≤+∞
-∞<z<+∞
注意:柱面坐标系就是平面极坐标系加上z轴。

柱面坐标系的三坐标面是:
r为常数时——>圆柱面;
θ为常数时——>半平面;
z为常数时——>平面。
柱面坐标与直角坐标的关系为:
x=rcosθ;
y=rsinθ;
z=z。
相似回答