解çï¼å½n=1æ¶ z(x) = e^(x-1) - x z1(x) = e^(x-1) -1 ï¼ä¸ºz(x)çä¸é¶å¯¼æ°ï¼ å½xâï¼1ï¼+âï¼æ¶ z1(x) æéå¢ æ以z1(x)>z1(1)=0 æ以z(x)æéå¢ z(x)>z(1)=0 ä¹å°±æ¯e^(x-1)ï¼x^n/nï¼å¨n=1æ¶ç« åå
e^(x-1)ï¼x^n/nï¼å¨n=kæ¶æç« å³e^(x-1) > x^k/k! e^(x-1) - x^k/k! >0 åå½n=k+1æ¶ z(x) = e^(x-1)-x^(k+1)/(k+1)ï¼ z1(x) = e^(x-1) - (k+1)x^k/(k+1)! = e^(x-1) - x^k/k!>0 ç±ä¸ä¸æ¥n=kæ¶çç»è®º å½xâï¼1ï¼+âï¼æ¶ z1(x)æ大äº0 æ以z(x)æéå¢ æ以z(x)>z(1)= 1 -1^(k+1)/(k+1)ï¼=1-1/(k+1)!>0 æ以e^(x-1)ï¼x^(k+1)/(k+1)ï¼ y=x-3aä¸y=-x+a-1 x-3a=-x+a-1 2x=4a-1 x=(4a-1)/2 y=x-3a=(4a-1)/2-3a=(-2a-1)/2 交ä¸ç¬¬ä¸è±¡éå: (4a-1)/2ï¼0 aï¼1/4 (-2a-1)/2ï¼0 aï¼-1/2 â´-1/2ï¼aï¼1/4
温馨提示:内容为网友见解,仅供参考