第1个回答 2018-09-28
的确,在数学中有一部分的内容看起来比没有太多的联系,像三角函数、数列、向量、等等。但是即便如此为什么很多的国家仍然设立数学学科,而且还是必修课
那么为什么我们国家对数学如此的重视?从中国的数学历史中可以了解到。
纵观中国数学的发展可以说是历史悠久,传承古今。不难发现在历史的长河中数学是不可缺少的一个学科。现如今更是筛选人才的一门学科,无论是从小学到高考,甚至在各大招聘企业的笔试中也都会有所涉及。
中国数学起源于上古至西汉末期,中国数学的全盛时期是隋中叶至元后期。接下来在元后期至清中期,中国数学的发展缓慢。就在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年~1911年之间。近代数学的开端主要集中在公元1911年~1949年这一时期。
我们不难发现在生活的日常中,数学的运用是如此的普遍,比如九九乘法表,我们从小就熟烂于心,在我们平时购物、算账的时候,可用性极大;统计学、概率学、以及三角函数在我们很多的领域都有着不可代替的用途。
数学作为一门基础学科,对于其他的学科来说是一个不可缺少的工具。数学从科学研究到我们日常运用;都扮演着不可代替的角色,在经济金融、计算机等学科更是尤其重要。
数学的应用
1:数学是一门运算工具
我们从儿时就开始接触数学,应用数学,很多学科都是基于数学发展的。比如物理、化学、以后大家选择的专业也都会和数学多少有关系的。
2:数学的思维锻炼
众所周知数学是严谨的,有着很强的逻辑性。学习数学也可以培养学生的理性思维,养成严谨思考的习惯。这对一个人在以后的生活和工作都起着重要的的作用。
3:时代应用的需要
无论是在古代还是当今的社会,数学都是如此的重要。从张衡、刘徽、祖冲之、梅文鼎、到华罗庚、陈建功、林家翘;数学在当前的时代中都起到重要的作用甚至改变了大局。
数学改变了我们思考方式
日本数学家米山国藏说:“作为知识的数学,出校门不过两年就可以忘了。唯有深深铭记在头脑中的数学精神、数学思路、研究方法和着眼点等,这些随时随地发生作用,使他们终生受益”
是的!在现实的生活中也许我们不能随时随地的运用三角函数、数列等比、空间向量;但是数学的思维方式会一直的伴随你的左右,数学更多的是教会我们如何思考。
中国数学发展史
在中国古代数学发展史中,我们的数学思想一直是领先多年,以下是我国数学历史发展的事迹。
(1)十进位制记数法和零的采用。源于春秋时代,早于第二发明者印度1000多年。
(2)二进位制思想起源。源于《周易》中的八卦法,早于第二发明者德国数学家莱布尼兹(公元1646~1716)2000多年。
(3)几何思想起源。源于战国时期墨翟的《墨经》,早于第二发明者欧几里德(公元前330~前275)100多年。
(4)勾股定理(商高定理)。发明者商高(西周人),早于第二发明者毕达哥拉斯(公元前580~前500)550多年。
(5)幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方的出现在公元2世纪,我国早于国外600多年。
(6)分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,它的传本至迟在公元1世纪已出现。印度在公元7世纪才出现了同样的法则,并被认为是此法的“鼻祖”。我国早于印度500多年。
中国运用最小公倍数的时间则早于西方1200年。运用小数的时间,早于西方1100多年。
(7)负数的发现。这个发现最早见于《九章算术》,这一发现早于印度600多年,早于西方1600多年。
(8)盈不是术。又名双假位法。最早见于《九章算术》中的第七章。在世界上,直到13世纪,才在欧洲出现了同样的方法,比中国晚了1200多年。
(9)方程术。最早出现于《九章算术》中,其中解联立一次方程组方法,早于印度600多年,早于欧洲1500多年。在用矩阵排列法解线性方程组方面,我国要比世界其他国家早1800多年。
(10)最精确的圆周率“祖率”。早于世界其他国家1000多年。
(11)等积原理。又名“祖暅”原理。保持世界纪录1100多年。
(12)二次内插法。隋朝天文学家刘焯最早发明,早于“世界亚军”牛顿(公元1642~1727)1000多年。
(13)增乘开方法。在现代数学中又名“霍纳法”。我国宋代数学家贾宪最早发明于11世纪,比英国数学家霍纳(公元1786~1837)提出的时间早800年左右。
(14)杨辉三角。实际上是一个二项展开式系数表。它本是贾宪创造的,见于他著作《黄帝九章算法细草》中,后此书流失,南宋人杨辉在他的《详解九章算法》中又编此表,故名“杨辉三角”。
在世界上除了中国的贾宪、杨辉,第二个发明者是法国的数学家帕斯卡(公元1623~1662),他的发明时间是1653年,比贾宪晚了近600年。
(15)中国剩余定理。实际上就是解联立一次同余式的方法。这个方法最早见于《孙子算经》,1801年德国数学家高斯(公元1777~1855)在《算术探究》中提出这一解法,西方人以为这个方法是世界第一,称之为“高斯定理”,但后来发现,它比中国晚1500多年,因此为其正名为“中国剩余定理”。
(16)数字高次方程方法,又名“天元术”。金元年间,我国数学家李冶发明设未知数的方程法,并巧妙地把它表达在筹算中。这个方法早于世界其他国家300年以上,为以后出现的多元高次方程解法打下很好的基础。
(17)招差术。也就是高阶等差级数求和方法。从北宋起中国就有不少数学家研究这个问题,到了元代,朱世杰首先发明了招差术,使这一总是得以解决。世界上,比朱世杰晚近400年之后,牛顿才获得了同样的公式。
所以学习数学不仅仅是为了考试
更是锻炼自己的逻辑思维
思考能力
所以请大家认真对待数学
它将会是会伴随你的一生
第2个回答 2020-09-17
数学学不好,剁手都比别人出血多
双十一已经过去接近半个月了,相信不少多剁手党的快递已经收到了。在今年的双十一活动过程中想必大家也发现商家的各种优惠五花八门,一个不小心就少得到部分优惠,悔恨万分。
曾经听到很多人抱怨,想当年中高考学了那么多知识,有多少我们工作用到了?尤其是数学,经常听人说“学那些复杂的数列,几何,函数,生活中有什么用?我会简单计算,平时买个东西,会算钱就够了呀!!!”。毕竟语文可以让我们理解文章,平时刷新闻,刷微博都有用处,英语多了一门语言,可以看看外国的时政消息,出个国旅游简单交流没问题。但是数学,我们真的掌握了能计算买东西不吃亏的程度么?
一直有一个经典的数学题:
有3个人去投宿,一晚30元,三个人每人掏了10元凑够30元交给了老板,后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元,这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9= 27元 +服务生藏起的2元=29元,还有一元钱去了哪里???
大部分人看完题目的第一反应想必都是:对啊,怎么会少呢?
这里就涉及到数学计算,我们花钱也好,收钱也好,想不吃亏,数学总要算的好吧。
今天小编就遇到双十一货优惠活动二送一,结果缺货退换货的问题。淘宝客服建议没货的物品退款,重新拍等值得货物。小编退款结束发现,虽然货物是等值的,但是由于当时有各种减免优惠实付款是小于货物价格的,我的退款金额,不够支付购买相同价位的货物。和卖家沟通补我差价,沟通了一个下午的时间,卖家坚持货物是等值的,不存在我多付钱的问题。因为其中涉及到二送一优惠价格计算,和我重新购买的计算,卖家客服用官方计算公式算出的结果是:没有差别,一度以为小编在胡搅蛮缠。
最终客服人员在我列出几种不同的计算方式得到的都是有差额的情况下,卖家终于理清了问题所在,顺利达成一致协议。
如果小编的计算思路和逻辑和客服一样不清不楚的话,小编会莫名奇妙的比别人多出血。
所以数学也很重要啊,不只是加减法,还要会理清各种价格的关系,这些关系是多年学习数学练习出来的逻辑性,理不清,就会得出上面题目的结果。
所以数学很重要,重要到我们以后会剁几双手。
第3个回答 2018-07-28
我们在学习一样东西的时候(比如数学),其实我们最后真正得到的是两个层面的东西。 第一个层面是这个学科非常具体的内容,比如数学公式、解题技巧。这类东西通常可以被写在教科书上,也容易用语言描述出来,我们可以称之为“显性知识”。 第二个层面是在学习这个学科的过程中带给我们的影响或者顺带学到的一些思维方式、思维习惯或者其他一些微妙而隐晦的东西。这类东西一般很难用语言表述出来,甚至很多人在掌握这些知识、习惯之后,自己并不会意识到自己已经“学会了”它们。这类知识,我们一般可以称之为“隐性知识”。 比如,在科学史上,古希腊哲学家泰勒斯的一句“万物源于水”被认为是早期科学诞生的重要标志之一。但是我们知道万物源于水这句话实际上在科学上并不正确。那为什么他的话还会流传至今呢?原因在于,虽然这句话在显性知识层面上不正确,然而这句话背后却隐含着这样一种思维逻辑:即人类第一次对世界的规律的问题做了从自然自身寻找答案的尝试,而不是简单地将其托付于超自然力的原因,这一点正是科学的核心思想之一。而这个隐性知识实际上对当时认可这句话的人们起的作用远比其显性知识来得作用要大。虽然这句话本身是错的,确使接受这句话的人在以后的问题中会更倾向于使用非神秘主义的方法来认识这个世界,科学也由此逐渐在人类文明中诞生。 由此可见,显性知识的运用往往是有条件、有范围的,而隐性知识虽然不容易被发现和察觉,但其作用和影响却可以作用于人的一生、乃至整个人类文明的发展轨迹。 回到你的问题,数学本身给我们带来的显性知识可能对于大多数不从事理工专业技术工作的人来说可能没有什么直接作用。就像韩寒曾经说的那样,我们生活中用到的数学估计到小学三年级就已经够用了。然而在之后我们多年来学习的数学,实际上塑造了我们一种理性的、条理的、系统化的思维方式。这种思维方式在我们解决自己一生中遇到的诸多问题时,都有非常重要的作用。比如慎密的思考、分类的思想、排序的思想等。很多东西其实都带有学习数学这个过程产生的影响,只是由于其作用方式非常隐晦,也不容易被追溯其源头,我们平时不容易注意到罢了。 因此对于平时工作不使用数学的人来说,真正学到,有益的的是那些隐形而非显性知识,而正是这些隐形知识将极大地影响我们在一生中做出的许多关键的抉择。
第4个回答 2019-01-24
一、在认知心理学里,思想方法属于元认知范畴,数学思想对认知活动起着监控、调节作用,对培养能力起着决定性的作用。学习数学的目的“就意味着解题”(波利亚语),解题的关键在于找到合适的解题思路,数学思想方法就是帮助构建解题思路的指导思想。因此,向学生渗透一些基本的数学思想方法,提高学生的元认知水平,是培养学生分析问题和解决问题能力的重要途径。
二、 数学知识本身是非常重要的,但它并不是惟一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。未来社会需要大量具有较强数学意识和数学素质的人才。因此,向学生渗透一些基本的数学思想方法,是未来社会的要求和国际数学教育发展的必然结果。
三、 小学数学教材是数学教学的显性知识系统,许多重要的法则、公式,教材中只能看到结论,许多例题的解法也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括和探索推理的心智活动过程。因此,数学思想方法是数学教学的隐性知识系统,小学数学教学应包括显性和隐性两方面知识的教学。教师如果在教学中仅仅依照课本的安排,沿袭着从概念、公式到例题、练习这一传统的教学过程,即使讲深讲透,并要求学生记住结论,掌握解题的类型和方法,这样培养出来的学生也只能是“知识型”、“记忆型”的,将完全背离数学教育的目标。
四、小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法就是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上的因素,而数学思想方法就是纵轴的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,而且必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破。
五、 小学数学中蕴含的数学思想方法很多,最基本的数学思想方法有转化思想、类比思想、统计思想、符号思想、模型化思想、对应思想等,突出这些基本思想方法,就相当于抓住了小学数学知识的精髓。