â«(0,2)x^3dx
=[x^4/4](0,2)
=4-0
=4
â«(0,2)2^xdx
=[2^x/(ln2)](0,2)
=4/ln2-1/ln2
=3/ln2
â«(0,1)1/ï¼1+x^2)dx
=[arctanx](0,1)
=æ´¾/4-0
=æ´¾/4
â«(0,Ï/2)cosxdx
=[sinx](0,Ï/2)
=sinÏ/2-sin0
=1
â«(0,1)(2x+3)dx
=[x²+3x](0,1)
=(1+3)-0
=4
â«(0,1)1/(2x+3)dx
=(1/2)â«(0,1)1/(2x+3)d(2x+3)
=(1/2)[ln|2x+3|](0,1)
=(1/2)(ln5-ln3)
è¥ååç®
=(1/2)ln(5/3)
â«(0,Ï/6)cos^3x dx
=â«(0,Ï/6)cos^2xdsinx
=â«(1-sin^2x)dsinx
=[sinx-sin^3x/3](0,Ï/6))
=[1/2-(1/2)^3/3]-0
=11/24
â«(0,3)1/(x²+3²)dx
=[(1/3)arctan(x/3)](0,3)
=[(1/3)arctan1]-[(1/3)arctan0]
=Ï/12
温馨提示:内容为网友见解,仅供参考