环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr (d为直径,r为半径,π),扇形的周长 = 2R+nπR÷180˚ (n=圆心角角度) = 2R+kR (k=弧度)。
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。周长用字母C表示。
周长的计算公式:
圆:C=πd=2πr (d为直径,r为半径,π)。
三角形的周长C = a+b+c(abc为三角形的三条边)。
四边形:C=a+b+c+d(abcd为四边形的边长)。
特别的:长方形:C=2(a+b) (a为长,b为宽)。
正方形:C=4a(a为正方形的边长)。
多边形:C=所有边长之和。
扇形的周长:C = 2R+nπR÷180˚ (n=圆心角角度) = 2R+kR (k=弧度)。
扩展资料:
周长之历史上最先算出地球的周长:
2000多年前就已经有人用简单的测量工具计算出了地球的周长,这个人就是古希腊的埃拉托色尼。
埃拉托色尼发现,离亚历山大城约 800千米的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候地面上的所有直立物都应该没有影子。
但是,亚历山大城地面上的直立 物却有一段很短的影子。他认为,直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成的。从地球是圆球和阳光直线传播这两个前提出发,从假想的地心 向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角。
按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的 圆周长。埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万千米,这与实际地球周长(40076千米)相 差无几。
他还算出太阳与地球间距离为1.47亿千米,和实际距离1.49亿千米也惊人的相近。
参考资料:百度百科-周长
圆:C=πd=2πr (d为直径,r为半径,π)
三角形的周长:C = a+b+c(abc为三角形的三条边)
四边形:C=a+b+c+d(abcd为四边形的边长)
长方形:C=2(a+b)(a为长,b为宽)
正方形:C=4a(a为正方形的边长)
多边形:C=所有边长之和。
扇形的周长:C = 2R+nπR÷180˚ (n=圆心角角度)= 2R+kR(k=弧度)
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。
扩展资料
圆周长是指在圆中内接一个正n边形,边长设为an,正边形的周长为n×an,当n不断增大的时候,正边形的周长不断接近圆的周长C的数学现象,即:n趋近于无穷,C=n×an。
后来的数学家们就想办法算出这个π的具体值,数学家刘徽用的是“割圆术”的方法,也就是用圆的内接正多边形和外切正多边形的周长逼近圆周长,求得圆接近192边型,求得圆周率大约是3.14。
割圆术的大致方法在中学的数学教材上就有。然而必须看到,它很大程度上只是计算圆周率的方法,而圆周长是C = π * d似乎已经是事实了,这一方法仅仅是定出π的值来。
参考资料来源:百度百科-周长
参考资料来源:百度百科-圆周长
本回答被网友采纳周长的公式:
①圆:C=πd=2πr (d为直径,r为半径,π)
②三角形的周长C = a+b+c(abc为三角形的三条边)
③四边形:C=a+b+c+d(abcd为四边形的边长)
④特别的:长方形:C=2(a+b) (a为长,b为宽)
⑤正方形:C=4a(a为正方形的边长)
⑥多边形:C=所有边长之和。
⑦扇形的周长:C = 2R+nπR÷180˚ (n=圆心角角度) = 2R+kR (k=弧度)
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。
多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr (d为直径,r为半径,π),扇形的周长 =2R+nπR÷180˚ (n=圆心角角度) = 2R+kR (k=弧度)。
周长只能用于二维图形(平面、曲面)上,三维图形(立体) 如柱体、锥体、球体等都不能以周界表示其边界大小,而是要用总表面面积。
参考资料:百度百科-周长