古希腊的三大几何问题是什么

如题所述

古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个难题是“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。
这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的:
1.立方倍积 即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
2.化圆为方 即作一正方形,使其与一给定的圆面积相等。
3.三等分角 即分一个给定的任意角为三个相等的部分。
温馨提示:内容为网友见解,仅供参考
第1个回答  2016-01-12
这是三个作图题,只使用圆规和直尺求出下列问题的解
1.立方倍积 即求作一立方体的边,使该立方体的体积为给定立方体的两倍。
2.化圆为方 即作一正方形,使其与一给定的圆面积相等。
3.三等分角 即分一个给定的任意角为三个相等的部分。
相似回答
大家正在搜