分部积分法,求不定积分∫(x^3+2x+6)e^(2x)dx?

下面有过程,但不知道怎么来的??e^(2x)是哪个部分???∫uv^(n+1)dx=uv^n-∫u'v^n dx
e^(2x)是v^(n+1)

∫(x^3+2x+6)e^(2x)dx=∫(x^3+2x+6)d[1/2*e^(2x)]
=(x^3+2x+6)*[1/2*e^(2x)]-∫[1/2*e^(2x)]d(x^3+2x+6)
=(x^3+2x+6)*[1/2*e^(2x)]-∫(3x^2+2)d[1/4*e^(2x)]

=(x^3+2x+6)*[1/2*e^(2x)]-(3x^2+2)*[1/4*e^(2x)]+∫1/4*e^(2x)d(3x^2+2)
=(x^3+2x+6)*[1/2*e^(2x)]-(3x^2+2)*[1/4*e^(2x)]+∫6xd[1/8*e^(2x)]
...
=(1/2*x^3-3/4*x^2+7/4*x+17/8)e^(2x)+c
温馨提示:内容为网友见解,仅供参考
无其他回答
相似回答