解:
f(x)=2sin²(π/4 +x)-√3cos(2x)
=1-cos(π/2 +2x)-√3cos(2x)
=1-sin[π/2-(π/2+2x)]-√3cos(2x)
=1-sin(-2x)-√3cos(2x)
=1+sin(2x)-√3cos(2x)
=2[(1/2)sin(2x)-(√3/2)cos(2x)] +1
=2sin(2x-π/3)+1
(1)
最小正周期T=2π/2=π
(2)
2kπ+π/2≤2x-π/3≤2kπ+3π/2,(k∈Z)时,sin(2x-π/3)单调递减,f(x)单调递减
此时,kπ+5π/12≤x≤kπ+11π/12,(k∈Z)
函数的单调递减区间为[kπ+5π/12,kπ+11π/12],(k∈Z)
(3)
x∈[π/4,π/2],则π/6≤2x-π/3≤2π/3
½≤sin(2x-π/3)≤1
2≤2sin(2x-π/3)+1≤3
|f(x)-m|<2
-2<f(x)-m<2
m-2<f(x)<m+2
要不等式对x∈[π/4,π/2]恒成立
m-2<2且m+2>3
m-2<2,m<4
m+2>3,m>1
综上,得:1<m<4
m的取值范围为(1,4)
温馨提示:内容为网友见解,仅供参考