是这个问题引发了我的思考。
下列说法错误的是:
A函数值域中的每一个值有定义域中的一个值与它对应
B函数的定义域是无限集则值域也是无限集
C定义域与对应关系确定后,函数值也就确定了
D若函数的定义域只有一个元素,则值域也只有一个元素
先说说我的想法。我个人认为,严格来说,这四个选项都有点问题。A显然是不对的, 因为函数存在多对一的情况,所以不对。B也是有问题的,比如说函数y=0x,这个函数x取值范围是无限的,可是值域是有限的,只有一个0,这个函数并不违反规定,可以视为y=f(x),这个f为乘0;或者,比如取整函数y=[x],我令其定义域为(1,5),为无限集,可是值域只有{2,3,4}三个元素,也是有限集,所以B不对。C选项就涉及到定义的问题了,课本上说函数就是两个非空数集A、B之间的映射,可以一对一,也可以多对一,A中的每一个元素在B中有唯一与之对应的元素,而B中可以有剩余元素,即A中可以没有元素与B中的元素相对应。这样问题就来了,我们平时在求函数的值域时,都是根据其定义域求的,定义域和对应关系确定了,值域也就求出来了,但是如果按照值域这样的规定,那么就可以投机取巧了:只要题中问值域,我就可以答值域是R,因为若B为R,则A里面元素的所有像必然被包括在B里,而B中其余的元素我就说没有原像,这是合乎规定的。所以,问题就是纠结于,我们把A集合称为定义域,B集合称为值域,这两个集合到底是怎么产生的?是先有A和对应法则,然后算出来的B呢,还是A、B两个集合就是各自独立没有关系的?如果按照书中的规定,我更倾向于后者,就是两者没有关系,里面的元素是任意取的,是A、B两个集合恰好有一定的对应关系使两个集合联系起来了。可是如果这样,就无法避免值域的不可求性,可以钻空子了。严谨的数学是不允许有这样的空子的!而D选项如果按照规定,也无疑使错误的。关键就在于A和B究竟是什么关系。【关键就在于A和B是什么关系!!!!!!!!!!!!!!!!!!】这个问题困扰了我好久,我希望能得到高中老师或者大学教授的耐心回答,先行谢过大家了!请高手答疑解惑!!!!!!!!!!!!!!!!!!
辛苦大家了,我在一个朋友的提示下,在百度百科里面找到了一段这样的话:输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。 这个样子呢,问题就解决了。我以前用过的教材是错误的,但愿现在改回来了,呵呵。
大家说的都是对的,谢谢大家的回答。我把分给第一个详细回答我这个问题且回答对了的人,大家没有意见吧?呵呵,谢谢大家的支持!谢谢大家!
注意[-1,1]是无限集。你们的意思我看明白了,我也想到了。只是我没有看到你们的根据哦!我要根据!
追答不好意思,写错了,[-1,1]确实是无限集。。。
受教了,呵呵,多谢!
追答给你个建议,保持质疑态度,多方查证。
但不要太盛气凌人,呵呵,必要时候收敛一下。
有时候这样是因为问题憋了太久,那就早点说出来。
等憋出了情绪就不理智了,不利于解决问题
嘿,介意采纳我吗。
对了,我QQ815930469,不介意的话加个好友
朋友,谢谢您的提醒,我加上那么多省略号:【关键就在于A和B是什么关系!!!!!!!!!!!!!!!!!!】只是引起大家的注意,让大家看到回答的重心在哪里,并非您说的盛气凌人。其实大家说的都是一个意思,我也想到了,只是苦于没有根据,没有根据我是不会轻易相信的:(请您说出根据,您的观点出自于哪里?)数学问题不比文科,不能含糊,所以希望您能谅解。如有冒犯之处还请海涵,在这里再次感谢您。括号里为我的引用。
多谢多谢!感觉得出来您肯定学过了高等数学,只是,在高中范围内,是可以一个y对应多个x的,仍然是函数,只是反过来不行,因为这使得函数出现了不确定性,就失去了函数的意义了。不知道您这样说:严格意义上讲y=x的平方也是曲线;我是否可以理解为您认为对称轴和y轴平行的二次函数也不算函数?这个好像和高中的课本说的不一样,您是用了高等数学里的知识吗?求解释 。
追答对于函数有一点要进行补充:一个y可以对应多个x,但是一个x“只能”对应一个y。对于这一点在函数的范畴内是可行的。
也就是说,y=x的平方此类基本曲线(看做函数也行,看下文分析)中,有一个x,那么只能输出一个y(y相同与否是不影响函数的定义的),而对于y映射为x就“无任何”要求!
总而言之:在图像上,一条x=a与函数相交,交点“只为”(a,y)(注意,只有一个交点),那么它就一定是y关于x的函数。所以,y=x的平方是函数。只不过它是四大基本曲线(抛物线)中的一种,也同样归类为曲线罢了(您也可以认为它是曲线与函数的交集之一)。并且往后面学,您也会把它叫做曲线,而不再叫二次函数咯!
现在不妨拿起笔来做图像:位于笛卡尔坐标系上画一个圆,您画一条x=a与圆相交,会发现它有两个交点!那么您就可以大胆的说:它绝不是函数!您画一条二次函数,再画一条x=m时会发现:它有且只有一个交点,那么您也就可以大胆的说:它一定是函数。
现在是否还有些迷惑?如果有请提出。我会尽我所能的!
过年快乐!