1.æ±ä¸å®ç§¯åï¼â«â[(1+x)/(1-x))]dx
解ï¼å
æ±
å®ä¹åï¼ç±(1+x)/(1-x)â¥0,å¾(x+1)/(x-1)â¤0,æ
-1â¤x<1.
äºæ¯å¯ä»¤x=sin²u, dx=2sinucosudu,æ
åå¼=2â«â[(1+sin²u)/(1-cos²u)]sinucosudu=2â«[â(1+sin²u)]cosudu=2â«[â(1+sin²u)]d(sinu)
=(u/2)â(1+sin²u)+(1/2)ln[sinu+â(1+sin²u)]+C
å°u=arcsinâx代å
¥å³å¾
â«â[(1+x)/(1-x))]dx ï¼(1/2){[arcsinâx]â(1+x)+ln[âx+â(1+x)]}+C
2. æ±ä¸å®ç§¯åï¼â«dx/â(x-x²)
解ï¼åå¼ï¼â«[2dx/â[1-(1-2x)²]=-â«[d(1-2x)]/â[1-(1-2x)²]=-arcsin(1-2x)+C.