1、通过大数据进行市场营销
通过大数据进行市场营销能够有效的节约企业或是电子商务平台的营销成本,还能够通过大数据来实现营销的精准化,达成精准营销。
通过分析大数据对消费者的消费偏好进行分析,在消费者输入关键词之后,提供与消费者消费偏好匹配程度较高的产品,节约了消费者的寻找商品的时间成本,使交易双方实现快速的对接。实现电子商务平台或是企业营销的高效化。在数据化时代,针对消费者进行针对性的营销能够实现精准营销,提升产品的下单率,提升电子商务 的营销效率。
2、实现导购服务的个性化
对于电子商务的平台来讲,往往都会针对用户提供一些推荐和导购服务。通过大数据的分析和挖掘能够实现导购服务的个性化。针对消费者的年龄、性别、职业、购买历史、购买商品种类、查询历史等信息,对消费者的消费意向、消费习惯、消费特点进行系统性的分析,根据大数据的分析针对消费者个人制定个性化的推荐和导购服务。
大数据的运用能够抵消电子商务虚拟性所带来的影响,提升竞争力,挖掘更多的潜在消费者。针对消费者的消费偏好,进行适宜的广告推广,提升产品的广告转化率,同时提供个性化的导购服务。
对于一些大型的电子商务平台来讲,产品种类繁多,想要提升消费者的消费量,提升消费者的下单率就要通过分析消费者的消费偏好,主动进行商品的推送。这种通过大数据进行分析的方式不仅仅能提升产品的浏览量,还能针对消费者的消费需求提供商品的推送,提升消费者的用户体验,进而提升消费者的忠诚度。
3、为商家提供数据服务
大数据的分析不仅仅能够帮助电子商务平台提升下单率和销售额,还能将大数据的分析作为产品和服务向中小型的电子商务商家进行销售。这样不仅仅能够提升平台的收益,还能帮助商家了解消费者的消费偏好、消费者对于该类 产品的喜好等信息,来帮助商家及时针对大部分消费者的消费偏好以及市场的动态,针对产品的性能等进行研发和调整。
大数据的应用:
1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。
参考资料来源:百度百科-大数据
1、趋势预测
当人们试图在竞争激烈的企业环境中让企业业务领先一步的话,那么需要做得很好。这很简单,就是通过预测市场究竟会发生什么。
利用大数据,可以预测市场将会经历的趋势,并利用它获取优势。无论是社交媒体,浏览潜在客户的习惯,购买广告数据,甚至是情绪分析,大数据都可以帮助企业确定将在一段时间内主导市场的产品。
2、识别模式
根据客户的偏好和习惯,企业可以尝试预测客户将要进行的下一步工作。这有什么帮助?考虑一种不经常销售的产品,但是如果将它与另一种产品结合起来,就会很畅销。
例如,如果商家的一位顾客正在从其电子商务网站购买哑铃,根据其他一些观察,商家就可以发现这个客户是一个健身爱好者,所以可以推荐给他一罐乳清蛋白,看看他们是否购买。往往他不会对此拒绝。而在电子商务网站识别个性化模式方面,大数据是关键。
3、季节性购物
大数据还可以帮助企业通过结合预测趋势和识别模式这两点为客户提供季节性的物品,从而显着改善商家的业务。因此,无论是圣诞节还是复活节,商家都可以保持领先客户一步,并引导他们购买正在寻找的东西,而不会浪费时间和精力。
4、更好的客户服务
电子商务公司的客户服务部是其第一道防线。每当客户对其产品或服务有任何顾虑时,他们的顾虑都将交给客户服务部门处理。所以这样做会使企业的客户关怀团队成为公司最重要的部分之一。
现在借助大数据,电子商务公司可以使用这些客户提供的信息,通过他们的浏览记录、在线搜索和模式,为他们制定个性化的客户服务体验。这又反过来帮助电子商务公司留住这些顾客并与他们建立终身的关系。
扩展资料:
在电子商务中大数据应用所面临的主要挑战包括如下几个方面:
1、数据的安全保护。
在电子商务中,数据安全保护,既有技术层面的问题,也有法律层面的问题。
2、数据的权益保护。
在电子商务中,数据成为经济活动的新资源,数据的经济价值必然会催生出数据的所有权和收益权,因而也就有数据的权益保护问题。
3、公共数据的利用。
在电子商务中,如何利用公共数据?公共数据利用的基本前提应该确保公共数据的安全和公共事务的安全。
4、私有数据的利用。
在电子商务中,如何利用私有数据?私有数据获取应该考虑合法性问题。
5、数据应用的行为。
在电子商务中,数据应用的行为是否合法,损害他人利益或公共利益的数据应用行为应该禁止。
参考资料来源:百度百科-大数据
参考资料来源:百度百科-电子商务
本回答被网友采纳一、 大数据在电商行业的运用
截止到2012年底,中国网购的用户规模已达到2.47亿,而今年“双十一”淘宝天猫当天日交易量就达到了571亿元,这些数据都说明了电子商务在生活中的重要性已不可忽视。同时,根据Alexa统计及数据估算,淘宝网的日均页访问量达到了3.53亿,每天产生的数据量更是高达60TB。
大数据开发和软件定制是一种模式,这里提供最详细的报价,如果真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,想说的是,除非想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
经历了基于用户数量的时代,基于销量的时代,目前的电子商务市场交易已处于基于数据的时代,电子商务的竞争在很大程度上就是大数据的竞争。由于平台所产生的巨大信息量以及其所收集到的用户信息具有真实性、确定性和对应性,电子商务具有了利用大数据的天然优势。大数据的应用将贯穿整个电商的业务流程,成为公司的核心竞争力。随着电商企业对待大数据的挖掘、分析,已经开始了对大数据的实际应用。
Ø 客户画像
美国医药网站遵照有身的女性用户填写的受孕动静定期,给用户寄EDM(Email Direct Marketing)提醒母亲在某些特定时间点的重视、必要摄取的养分、产前的心思变动和要做好的思想筹备;同样,也包括之后的产后复原,宝宝的育养和健康,等等。
Ø 精准营销
号店通过手机平台的大数据,对其进行分析,给顾主发送个性化EDM,进行精准的电子邮件营销。若顾客曾经在1号店网站上查看过一个商品却未购买,一号店会根据可能的情况:缺货,价格不合适,商品不合适等经行分析,分别在到货、降价或引入类似商品时以电邮方式告知客户。同时,通过挖掘客户的周期性购买习性或附近类似客户的购买周期习性,适时提醒客户。
淘宝在2012年推出了“淘宝时光机”项目,该项目通过分析用户自注册为用户以来的行动,用幽默生动的谈话模式,告知顾主淘宝的成长历史以及该用户在淘宝购物的轨迹。通过收集与该用户有相类似喜好的其他用户的行动并经过分析后,可以对特定用户的偏好和行动轨迹进行猜测,已达到精准营销的目的;并可以用特定用户喜好的方式和个性化的数据、拉近了与顾客的距离。
Google的Adsense对顾客的搜索过程和其对各网站的关注度履行数据经行发掘,并在联盟内网站上追踪用户的去处,将数据整合后经行分析,在其联盟网站上推出了和顾客潜在兴趣相匹配的广告,达到精准化营销。
Ø 信用评级
阿里巴巴则通过在淘宝、天猫等网站积累的数据资料,通过对用户的销售终端、资金使用等数据进行追踪和收集,以了解中小企业的交易状况。从中可筛选出财务健康、讲究诚信的企业,为发放无担保贷款,解决其贷款难的问题,不仅新增了盈利模式又可以防范风险。目前,阿里巴巴已收贷300多亿元,坏账率仅为0.3%,远低于银行贷款坏账率。
Ø 广告推介
当当网、卓越网等电商企业之前通过协同算法来找到商品之间的联系,即:当购买某件商品时,会展现相关商品的推荐信息。这能够为用户查找相关商品提供方便,提升客户体验;更是利用了商品之间的互补性与相关性,增加了销量。并且,通过对平台用户的浏览痕迹进行记录分析,正对不同层次类型的用户会提供特定的商品推荐信息。
Ø 物流配送
亚马逊(Amazon)近几年推出了FDFC(ForwardDeployed Fulfillment Center)的概念,以加快对顾客配送的速度。Amazon的订单履行中心分两个层级:FC和FDFC,其中FC品种更齐全,而FDFC在物理位置上更靠近目标市场,但品种重点容纳针对目标市场的热销商品,顾客的大部分需求可以通过FDFC来满足,不能满足的长尾商品则由FC来满足。这样顾客急需的商品多数可以通过FDFC以更快捷和低成本的物流来完成。由于热销商品是随着时间和季节而改变的,故将什么商品储存在FDFC的决策是动态调整的,而此决策的依据就是对顾客需求的分析和预测。
Ø 舆情分析
随着网络技术和电商平台的日趋完善,消费者对电商平台的口碑评价越来越关注,也使得电商平台口碑评价成为打造电商品牌的重要途径。网民对电商舆情的关注焦点主要集中在电商价格、商品质量、物流速度、售后服务等方面。为此有电商,如京东,对所在网站的文本数据进行舆情分析,以达到更加了解客户需求,主流偏好等信息。对于舆情分析第一步首先是通调查和深入访谈的形式,了解客户需求,确定研究方向;第二步则对客户关注该电商平台的所有关键词进行筛选,锁定关键词;接下来的第三步是通过中心自有监测平台采集抓取主题型关键词关注的百万级网民信息;第四步是将行业关键词放到监测框中进行筛选,获取具有行业属性的信息;第五步以行业特征数据分析基础,研究该群体对于某电商平台的关注特征;第六步依据研究结果,归纳研究结论,撰写行业研究报告。
相比于线下零售,电子商务网站具备非常吩咐的客户历史数据。通过这些数据的分析,能够进一步了解客户的购物习惯、兴趣爱好和购买意愿,并可以对客户群体进行细分,从而正对不同的用户对服务经行调整和优化,进行有针对性的广告营销和推送,实现个性化服务。
二、数据分析如何帮助电商行业提升绩效
大数据时代下,客户洞察、营销规划、物流管理、流程规划、风险控制等,都将受益于大数据相关技术。根据麦肯锡的报告,合理利用数据还将使零售商的运营效率在目前的基础上提高60%。以下总结了通过大数据提升电商企业绩效的方式:
u 客户洞察
通过对客户历史数据的分析,进一步了解客户的购物习惯、兴趣爱好和购买意愿,并可以对客户群体进行细分,通过用户画像了解用户,猜测用户对产品的需求或者潜在需求,精细化的定位人群特征,挖掘潜在的用户群体,为媒体网站、广告主、企业及广告公司充分认知群体用户的差异化特征,根据族群的差异化特征,帮助客户找到营销机会、运营方向,全面提高客户的核心影响力。
u 营销规划
精准的广告
通过网络数据的搜集成本低廉,并且用户在访问网页时以自身的真实需求作为出发点,也更具备真实性。此外,网络上所产生的海量星系是实时的,能够很好的反应用户的情绪以及其关注的热点。这些信息对于企业广告决策相当重要。电子商务企业同归对这次写海量数据的收集、分析和整合,挖掘出对自己有用的信息,分析不同用户群体的特征,根据用户需求和兴趣在正确的时间,给正确用户投放让其感兴趣的广告,从而保证营销的有效性和精准性。
消息的及时推送
实现消息额及时推送囊括的范围很广泛,包括在用户需要时提供信息,或者电商企业推送性吸引导用户进行购买等。很多电商企业利用大数据挖掘客户的周期性购买习惯,在临近客户购买周期时适时的提醒客户消费。
在O2O领域实现消息的及时推送也十分重要。通过移动电子设备,包括:移动电话、PDA、导航设备等,获得设备和人员位置及移动轨迹等数据,并对此加以分析。在用靠近进店铺时,适时推送商家信息,可以极大的提高消息的时效性及利用程度。
消息的个性化展示
人们的个性化需求日益凸显,而用户产生的数据这一模式使得数据来源更广,获得成本更低、更及时。身处大数据时代,信息量增长速度空前迅速,然而消费者获取、过滤、筛选和分析信息的能力却没有得到相应的提高,这必然会导致消费者眼膜在浩瀚的信息海洋中。这就需要电商企业具备将正确信息展现在正确的用户眼前的能力,从而增加用户粘度与忠诚度,以实现销售额与利润的增长。
而要实现信息展示的差异化,方法多样。例如:可以用动态网页来实现,通过与数据库进行交互,是的即使页面代码不发生变化,显示的内容却可随着时间、环境的变化而变化。利用大数据。对用户的数据进行收集、分析和整合,对数据库进行实时更新,从而改变页面内容,在信息海洋中为用户提供有用及时信息,对产品与服务进行针对性的调整与优化,为消费者提供个性化和精准的服务。
物流管理
将供应链领域的销售网点体系、条形码扫描设备、射频识别阅读仪、用于车辆和手提电话的全球定位系统以及用于管理交通、库房和其他运作的软件体系等数据相关联,并从多种渠道获取大量非结构性数据,进行研究,提升物流速度和针对性。如,要避免库存不足或者由于恶劣天气导致的延迟送货等现象的发生,就进行实时或者近乎实时的数据分析。
流程规划
企业通过大数据能够更好地根据市场需求与企业要求调整企业流程,包括设计、分析和优化流程。应用数据模型透视现有流程质量并根据当前市场需求调整现有业务流程。使企业分析过程中可以掌握流程在组织、结构及技术方面存在的不足,明确潜在的改进领域。设计阶段的目的是根据分析结果并结合企业目标制定目标流程,并在IT系统中实施有助于今后为企业创造价值的目标流程。
业务流程设计涉及到信息、需求、预测、计划、采购、生产、仓储、运输和交付等的全过程。而企业利用数据仓库将这些方面的数据逐一联系起来,从而实现按尽可能低的成本,最快的速度支持业务活动。以时间为基础的流程优化,以增值和反应速度为基准。
风险控制
在大数据时代下,企业能够通过海量数据研究客户需求,避免产品市场风险和存货风险。通过研究客户需求在一定程度上降低因市场变化、产品滞销等原因导致跌价或不能及时卖出自己的产品的影响。及时发现市场疲软、产品产销不对路;商品更新换代,客户偏好变化等影响销售的因素,从而很好地控制风险。同时,通过市场数据和客户数据的结合研究,企业能够更好地控制生产投入、控制采购、按时产出,加强保管。
三,云计算增强数据处理能力对电子商务的间接推动作用
云计算的发展历史并不长,首次引入云计算技术的是淘宝网,其所有交易都是基于自建系统完成的,而阿里云也成为我国首家开展云计算供应的公司。云计算对于大数据的超强处理能力使其对电子商务的发展起到了推波助澜的作用,主要影响表现在以下方面:
信息检索能力
电子商务平台虽然很大程度上改变了消费者的购物方式,但是就营销方式来说,商品数量和种类依然是影响消费者选择商家的主要因素。在电子商务领域内,商品数量和种类呈现出结构的繁杂化发展甚至是非结构化发展趋势。这些都为IT基础设施以及信息处理技术提出了挑战,大数据处理技术由于其具备的灵活性和功能强大的检索服务使其能够引领电子商务信息处理技术的新方向。
云计算的检索服务可以根据客户的实际需求和交易习惯对大量的信息进行筛选和显示,其智能性和高效性也是传统IT基础设施多不能比拟的。此外,云平台还具有信息推荐功能,根据网上交易整体情况筛选热点商品予以展示,提高了交易的针对性和检索效率。云计算性能的优势还体现在对人类部分思维进行描述的功能上,解决了长期以来计算机信息处理不能够准确把握人类语言和知识应用的难题,使数据的处理实现了功能的深度发掘。这种技术优势表现在实际交易中就是电商平台能够对用户输入的语言进行迅速的反映,并能准确地提供用户所需耍的商品信息。这种处理过程极大地提高了信息服务的效率和质量,使用户满意度得到了很大的提升。
弹性处理能力
电子商务信息处理系统的工作性质使其必须具有强大的弹性处理能力,并能够在极短的时间内做出反映以应对在系统运行中出现的各种问题。这些问题的出现并不是偶然的,而是随着用户的并发访问以及商家集体营销活动造成的大量订单信息所导致的,这些情况在当前的电商系统运行中是比较常见的,这就需要系统在面临突然增长的业务量时具有强大的扩容能力和数据的存储能力。
云计算技术的出现在理论上实现了信息的无上限存储能力以及超大规模信息处理能力,使其能够轻松地应对TB数量级的信息乃至PB数量级的信息处理。而这一功能的实施并不需要企业对硬件系统进行更换,而且能够以比较低的成本享用云计算存储处理信息服务,在此基础上对应用系统机型全方位的布局并保证了弹性处理能力的实现,使资源达到了最优化配置。
信息处理安全性能
网络系统面临的最大难题是信息安全问题,保证交易安全和用户信息安全更是电商企业应时刻关注的话题。信息时代的一大特征是将信息转化为可利用的资源,甚至是直接创造经济价值的信息资本。电子商务领域内,大数据就是企业生存发展的重要资本,对于大数据的掌控能力将成为衡量企业核心竞争力的主要标志。但是大数据的出现同样给信息资源的安全带来了极大的挑战,由于其结构复杂,数量巨多,并且大多是具有敏感性的信息,很容易成为网络攻击的目标。
大数据处理技术在应对信息安全是进行了性能的全面评估,使其能够及时、精确地定位各类网络攻击或非正常现象,并将这些异常数据收集整理通过分析实施预防措施。云计算技术的安全性还体现在将安全可靠的信息转化为云服务,并将这些信息托管在云端,为用户的信息提供了专业化的信息防护措施和保密方案。
总之,大数据的应用价值和潜力不再被人低估。但并不是所有企业都能在大数据这个金矿里真正挖到金子的。只有那些有远见有视野,重视系统,舍得投入,吸引了优秀的分析和系统人才的企业才会有所斩获。
本回答被网友采纳电商大数据分析
1丶会用工具自己做分析,不单单局限在淘宝,这个时代什么行业都有数据,如果掌握了,你做什么都能应用到。用淘宝指数或者阿里指数只能局限在淘宝这一块。\x0d
\x0d
2丶用现成的数据平台,只要求能看懂数据,几乎不需要自己动手分析数据。可能100个人里面有10个人能看懂这些数据并应用这些数据,如果要自己动手分析,100人里面可能只有2-3个有这种能力。往往能自己分析的机会会比别人多一点点。
有相关需求可以联系任拓数据科技(上海)有限公司,它是研发并提供全球范围内电商大数据服务的公司,我们依靠自主研发的领先的网络爬虫技术、搜索引擎技术,以及人工智能技术,实现了对海量电商数据的实时监测、清洗和统计,为各类从事电子商务的客户提供全面的市场信息和数据分析,帮助他们做出正确的商务决策。