如题所述
作变换x=rcosu,y=rsinu,则dxdy=rdrdu
原式=∫<0,2π>du∫<0,1>rdr∫<r^2,1>dz
=2π∫<0,1>r(1-r^2)dr
=π/2
二重积分的实质:表示曲顶柱体体积。三重积分的实质:表示立体的质量。
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。
重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。