f(x) = 2sin²(Ï/4+x)+â3cos2x-1
= {1-cos[2(Ï/4+x)] + â3cos2x - 1
= -cos(Ï/2+2x) + â3cos2x
= -sin2x + â3cos2x
= -2(sin2xcosÏ/3 - cos2xsinÏ/3)
= -2sin(2x-Ï/3)
æå°æ£å¨æ = 2Ï/2 = Ï
2x-Ï/3âï¼2kÏ+Ï/2ï¼2kÏ+3Ï/2ï¼ï¼å
¶ä¸kâZæ¶åè°å¢
åè°å¢åºé´ï¼ï¼kÏ+5Ï/12ï¼kÏ+11Ï/12ï¼ï¼å
¶ä¸kâZ-2sin(2x-Ï/3)
Câï¼0ï¼Ïï¼
2C-Ï/3âï¼-Ï/3ï¼5Ï/3ï¼
f(C)=â3
-2sin(2x-Ï/3)=â3
sin(2x-Ï/3)=-â3/2
2C-Ï/3=4Ï/3
C=5Ï/6
B=Ï-(A+C)
sinB=sin(A+C)
2sinB=cos(A-C)-cos(A+C)
2sin(A+C)=cos(A-C)-cos(A+C)
2sinAcosC+2cosAsinC = cosAcosC+sinAsinC-(cosAcosC-sinAsinC)
2sinAcosC+2cosAsinC = 2sinAsinC
-â3sinA+cosA= sinA
(â3+1)sinA=cosA
tanA = 1/(â3+1) = (â3-1)/2
温馨提示:内容为网友见解,仅供参考